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Abstract. The capacity for storing random patterns in a diluted neural network is determined 
following the method of Gardner. Two types of dilution are considered. In the quenched 
case, the broken couplings are chosen at random and are independent of the stored patterns. 
By contrast, in the annealed case, the disconnected couplings are selected in order to 
optimize the storage of the patterns. By the same token, the vanishing couplings are strongly 
correlated with the stored patterns. We also determine the distribution of the synaptic 
strengths. This distribution illustrates the difference between quenched and annealed 
dilution most clearly. 

1. Introduction 

The statistical physics of neural networks deals with systems of N formal neurons 
denoted by spin variables S, = *l, i = 1, , , . , N, interacting via synaptic couplings Jv. 
In the thermodynamic limit N + 00, these networks show emergent properties for 
information processing, in particular they can function as associative memories. This 
means that, given a set of p N-bit words {tt}, 67 = *l,  i = 1, . . . , N, p = 1, . . . , p ,  one 
can choose a synaptic matrix J ,  in such a way that the system relaxes to one of its 
patterns when an incomplete or noisy version of that pattern is presented to it as an 
initial condition. Many interesting static and dynamic properties of neural network 
models have been studied during recent years. An impressive account of the current 
activity in this field is provided by a recent special issue of this journal ( J .  Phys. A: 
Math. Gen. 22 (1989) number 12). 

The methods of statistical mechanics have been applied mainly to fully connected 
neural networks, in which each neuron interacts with every other neuron, i.e. J,, # 0 
for all i # j .  The full connectivity allows the determination of the partition function by 
the saddle-point method. In the present paper, we study diluted models in which each 
neuron is connected to only a fraction of the other neurons. There are several reasons 
why the investigation of diluted networks should be interesting. First, the connectivity 
of biological networks, though high, is far from complete. The human brain, for 
example, consists of 10" to 10" neurons, each one connected to about lo4 others. 
Diluted networks have been used to study such locally connected architectures 
(Canning and Gardner 1988, Noest 1989). Secondly, dilution is an attractive tool to 
study the robustness of the cooperative behaviour of neural networks against malfunc- 
tioning of some of the elements. For biological networks as well as for hardware 
realizations, it is desirable that the system function does not break down if only a few 
elements deteriorate in their performance. As a matter of fact, this kind of robustness 
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is often advanced to advocate the superiority of neural network architectures over 
more traditional computing systems. Finally, the dynamics of fully connected network 
models is characterized by strong internal feedback and by complicated correlation 
loops (Gardner er a1 1987). This makes an exact analytical treatment of the dynamical 
behaviour impossible. In order to determine, e.g., the basin of attraction, which is one 
of the most interesting quantities characterizing an associative memory, one has to 
rely on numerical methods. Dilution reduces the internal feedback and, in the extreme 
case where only o(ln N )  synapses remain per neuron, it allows a complete analytical 
description of the dynamics (Derrida et a1 1987) including the determination of the 
basin of attraction (Gardner 1989). 

There exist different types of diluted network models depending on the procedure 
used for disconnecting couplings in the fully connected network. The different types 
can be grouped in two classes which will be called quenched and annealedt dilution. 
In the case of quenched dilution, a certain fraction of all synapses is cut at random. 
This means, more specifically, that the cutting of connections is totally independent 
of the patterns that are stored or have to be stored in the network. Previous calculations 
for diluted networks have mainly considered quenched dilution (Derrida et a1 1987, 
Gardner 1989, Sompolinsky 1986, Van Hemmen 1987). In the case of annealed dilution, 
the choice of severed connections is not random at all. The zero couplings are selected 
in a way which takes account of the patterns to be stored and they help to achieve 
good storage of these patterns. The chopper model (Kinzel 1985, Van Hemmen and 
Van Enter 1986) and the three-synapses model of Sompolinsky (1987) and of Van 
Hemmen (1987) are examples of annealed dilution. In a recent paper, Bouten er a1 
(1990) determined the storage capacity of the diluted network with Ising couplings in 
the case of annealed dilution. 

The present paper is organized as follows. In Section 2, we use the techniques of 
Gardner (1988) to determine the storage capacity of a diluted network in the case of 
annealed dilution. The case of quenched dilution is studied in section 3. Here we 
consider two types of dilution, depending on whether the random cutting of connections 
is done before or after the learning process. In section 4, we determine the distribution 
of the coupling coefficients both in the case of annealed and of quenched dilution. 
The results are discussed in the last section. 

2. Storage capacity of diluted networks: annealed case 

In this section we study the storage properties of a neural network under the constraint 
that the fraction (1 -f) of all connections into every neuron should be cut. The choice 
of vanishing coupling coefficients should be made selectively with the aim of optimizing 
the storage capacity of the network. 

The calculation of the storage capacity in the annealed case will be done following 
the original method of Gardner (1988). To simplify our notation, we consider a network 
with N + 1 neurons and focus our attention on the neuron i = 0. We use the shorthand 
notation 

The coupling coefficients JJ have to satisfy three conditions. To express these conditions, 

t We are indebted to a referee of a previous paper (Bouten er U /  1990) for suggesting this terminology. 
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it is convenient to write them as a product of two factors 

with cJ = 0 or 1 and q a real number. The first condition 
N 

1 ‘J=fN 
J - 1  

fixes the degree of dilution (SE [0, 13). The second condition 

(3) 

sets the scale for the remaining non-zero bonds and ensures that .Ij is of order 1 on 
average. Finally, the third condition 

1 N 

expresses the fact that the coupling coefficients J, must store the p patterns {[Y} as 
fixed-point attractors of the neural network dynamics. These stability conditions contain 
the stability parameter K ( > O )  which controls the size of the basins of attraction (Krauth 
et al 1988, Kepler and Abbott 1988, Forrest 1988). 

Following Gardner’s method, one has to calculate the volume in the space of 
interactions where the three conditions (3)-(5) are satisfied. Using the form (2), this 
necessitates summing over the two possible values of each cI and integrating over all 
values of every T,. The normalization condition (4) restricts the domain of integration 
of those T, for which the corresponding cJ is equal to 1. Since the other T, (with 
corresponding cI =0 )  do not occur in the conditions ( 3 ) - ( 5 ) ,  they are completely 
unrestrained and will yield divergent integrals. We must therefore add an extra con- 
straint in order to make all integrals convergent. A convenient choice could be 

N 

(1 - c,) T: = (1 - f )  N 
J =  I 

which is the analogue of (4). An alternative choice consists in introducing a simple 
convergence factor exp[ -; 1, (1 - c,) T:] inside the integrals. We will use this latter 
approach, but it is easy to verify that both procedures are equivalent. 

We now follow Gardner (1988) in calculating the fractional volume in the space 
of interactions where the conditions (3)-(5) are satisfied. The conditions (4) and (5) 
are the same as in Gardner’s paper except for a trivial factor$ The new condition (3) 
is easily incorporated by appending a Kronecker delta to Gardner’s expression for the 
fractional volume (Bouten et a1 1990). The fractional volume V where conditions (3), 
(4) and (5) are satisfied is given by 

‘ ( C , } j ( n J  dq)exp[- ;zJ  (1-cJ)T;16Kr[E ‘J?fru’] 

Like Gardner, we want to calculate the entropy (In V )  where the angle brackets mean 
the average over the patterns {t?}. The average of In V can be determined using the 
replica method 

(V“)-1  
(In V )  = lim -. 
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The average V" is easily calculated if we replace the step functions and the delta 
functions by their Fourier representation. Using the same techniques and the same 
notation as Gardner, we obtain 

The integration variables qab have the same meaning as in Gardner's case. They differ 
only in the prefactor: 

(10) 
1 

qab=-CJPJJb. 
SN j 

The variables Ea and Fab are the same as in Gardner's paper: Fab is the variable 
conjugate to qab, while E,  is introduced to impose the constraint (4). The new variables 
+a have been introduced to express condition (3 ) .  The functions G I  and G2 are given 
by the following expressions: 

Gl (qab)=lnn  IK -j"= dha dxaexP(iXxah,- iZxa-  1 qabxaxb (11) ) a 2~ -m a < b  

Gz(FabEa$a)=ln C II dTa 
(col  a I 

x e X p ( - f C ~ l - C a ~ 7 a - i 1 E a C a ~ i +  a a a < b  FabCaTacbTb-$Cca$, a )  . (12) 

The function G,  is the same as Gardner's. The function G2 differs from Gardner's by 
two factors. The first term in the exponential function is the convergence factor discussed 
above, while the last term originates from the new condition (3). 

In the large-N limit, one can use steepest-descent methods to evaluate the integral 
(9). This yields a set of equations for the saddle point. In order to be able to solve 
these equations, we look for a replica-symmetric solution 

The four saddle-point equations for the replica-symmetric solution are given in appen- 
dix 1 .  For general values of a and f they can only be solved numerically. 

The storage capacity a,  of the neural network is obtained when the value of q in 
the solution of the saddle-point equations tends to 1. This is the saturation limit of 
the network. When q + 1,  it becomes possible to replace the integrals in the equations 
by their asymptotic expressions. This is also done in appendix 1 .  The resulting equations 
become much simpler. The fraction f of non-zero couplings and the storage capacity 
a, are both expressed as functions of a single parameter U which ranges between zero 
and infinity: 
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where Erf is the standard error function while Dz is the gaussian measure 

exp( -z2/2)  
6 d z. Dz = 

The two equations (14) give a parametric representation of the storage capacity a ,  as 
a function off:  When U -$ 0, we obtain the fully connected network f =  1 and a,  tends 
to Gardner’s result for the storage capacity 

- K  Dz(z+K)2)-’ .  (16) 

When U + CO, the network becomes extremely diluted f + 0 and a,  tends to zero as 

The dependence of the storage capacity a ,  on the fraction of non-zero couplings f is 
shown in figure 1 for the case K = 0 (curve a). At f =  1, the function a , ( f )  is tangent 
to the horizontal line a, = 2. A weak dilution reduces the storage capacity by a very 
small amount only. As f decreases further, the function a,( f) stays well above the 
linearly decaying storage capacity a, = 2f (curve b). As an example, f o r f =  0.75 when 
25% of all couplings are disconnected, the value of a,  is still 1.98 which means a 1% 
decrease only in storage capacity. When f becomes very small and tends to zero, a ,  
obviously must also tend to zero, but it does so very slowly. This is more clearly seen 
when we consider the storage capacity per synapse a,/f as is usual for extremely 
diluted networks (Derrida et a1 1987). From ( 1 7 )  we obtain, for the case K =0,  

a ,  -= -41n f 
f 

showing a logarithmic divergence when f tends to zero. 
The dependence of a ,  on the stability parameter K is identical for all values of f: 

This dependence has been studied by Gardner (1988) who gives a plot of a ,  as a 
function of K. 

Since the above results have been obtained within the assumption of replica 
symmetry, we have checked the local stability of the replica-symmetric saddle point. 
While these stability conditions are barely satisfied for the fully connected network 
f = 1, they become better satisfied as f decreases. This is reasonable because one expects 
a lesser degree of frustration in diluted networks. 

f 
Figure 1. The storage capacity a,( f )  as a function of the fraction f of non-zero couplings 
for K = 0 in the case of annealed dilution (solid curve a )  and of quenched dilution (broken 
line b: dilution before learning; broken line c: dilution after learning). 
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3. Storage capacity of diluted networks: quenched case 

We now turn to the study of the storage capacity of a neural network in which the 
fraction ( 1  -f) of all synapses into neuron i = 0 are cut randomly. The choice of 
vanishing coupling coefficients is independent of the learning process and, once it has 
been made, it is final. We will consider two different cases, depending on the time 
order of the dilution process and the learning process. 

We first consider a network in which the random cutting is carried out before the 
learning process starts. ThefN remaining connections are to be determined to guarantee 
storage of the given set of patterns. This again leads to the stability conditions (5). 
There is, however, an important difference from the previous section. In the annealed 
case, the choice of the coupling coefficients which will be zero is made during the 
learning process in such a way that they contribute to the storage properties of the 
network. This means that, in the sum (5), one is free to put the ( 1  - f ) N  zeros at 
the most favourable positions. In the present quenched case, on the other hand, the 
vanishing coefficients have been chosen at random, prior to the learning, and no 
freedom remains to shift the zeros around. The storage problem for the f N  remaining 
coupling coefficients, conditions (4) and (5), is identical to the original Gardner problem 
for the fully connected network with f N  neurons. The maximum number of patterns 
pmax that can be stored is therefore given by (Gardner 1989) 

P m a x  

From this, we obtain the storage capacity per neuron 
X 

c ~ . = ~ = f (  N - K  Dz(z+ K ) 2 ) - ‘ .  

The storage capacity depends linearly on the parameter J: It is represented by the 
broken line b in figure 1 for the case K = 0. 

We now turn to the more interesting case in which the random cutting is carried 
out after the fully-connected network has completed the learning process. The question 
now is: how well do  the memorized patterns remain stored in the network after (1 -f) N 
connections are broken in a random way? This is the important problem of the 
robustness of memories against the cutting of bounds. 

Imagine we have a fully connected network which has memorized the p random 
patterns {$}. The coupling coefficients J, then satisfy the two conditions 

N 

J;=N 
j =  1 

coefficients J, a Suppose we now choose at random ( 1  -f) N of th  , d put them equal 
to zero. Only f N  terms will remain in the sums (21) and (22) and many of the 
inequalities (22) will become violated. However, for a pattern 6” to be a fixed point 
of the retrieval dynamics, it is not necessary that (22) be satisfied with K > 0. The 
pattern 5” will remain a fixed point as long as the remaining sums in (22) are positive. 
It is therefore interesting to determine the distribution of the possible values of the 
remaining sums for different choices of the parameter J: Without lack of generality, 
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we may assume that the (1 -f) N vanishing coefficients J, are those with j > f N .  SO 
we must calculate the distribution of the truncated sums 

For f = 1 ,  this distribution has been obtained by Kepler and  Abbott (1988). Their 
calculation can be generalized for f< 1 .  Using the same techniques, one obtains after 
a long calculation 

The function H ( x )  is related to the error function: 

The parameter q in (24) is the usual order parameter of Gardner (1988) and is related 
to the storage ratio (Y = p /  N by her saddle-point equation (equation (22) of Gardner 
(1988)). Near the saturation limit q + 1 ,  the expression (24) can be simplified 

When f tends to 1 ,  the two distributions (24) and (26) reduce to the corresponding 
expressions of Kepler and  Abbott (1988). 

Using (24) and (26), we can now study the robustness of the memories in the fully 
connected network for different values of the parameters K and (Y (or q ) .  As noted 
above, the patterns will remain fixed points of the retrieval dynamics as long as all y 
are positive. Consider, as a first example, a network which has stored patterns using 
the stability parameter K = 0. When p = 2 N, the network is at the saturation limit q = 1 
and  we can use the simpler expression (26). A 1% cut of the connections (i.e. f =0.99) 
yields the distribution shown in figure 2. More than 26% of the y are negative and  as 
many fixed-point conditions are violated. Decreasing the number of cuts does not 
improve the situation. Using H ( 0 )  = i, one easily sees from the last term in (26) that 
any number of cuts, however small, will make at least 25% of the y negative. The 
saturated network, in the case K = 0, has absolutely no robustness. This, of course, is 
not surprising since the storage possibilities of the network are stretched to breaking 
point when p = 2N. For smaller values of p ,  but keeping K = 0, the situation does not 
improve drastically even though the network is far from saturated. In a network which 
stores only N / 2  patterns, cutting 1% of the connections still produces 4% negative y. 

The robustness of the memories can be improved substantially by using a larger 
stability parameter K during the learning process. Figure 3 shows the distribution 
P ( y )  obtained when respectively 5% or 10% of the connections are cut randomly in 
a network which has stored memories up  to saturation, but using the stability parameter 
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- 1  0 1 3 

'd 'd 

Figure 2. Probability distribution of the y (see text) 
for a saturated network in the case K = 0 f o r f =  0.99. 

Figure 3. Probability distribution of the y for a 
saturated network in the case K = 1 for f= 0.95 
(broken curve) and f =  0.90 (solid curve). 

K = 1. When 10% connections are cut, only 0.1% of the y become negative. This 
number falls to less than lo-' when only 5% of connections are cut. The number of 
patterns stored at saturation when K = 1 is about N / 2 .  Comparison with the results, 
quoted above, for K = O  indicates the advantage of storing the given set of patterns 
with the largest possible value of the stability parameter K .  This increases both the 
size of the basins of attraction and the robustness of the stored memories. 

In the preceding discussion, we have required that the fixed-point conditions y,  > 0 
be strictly satisfied for all patterns. When only very few y become negative and are 
small in absolute value, it is reasonable to assume that one of the neighbouring system 
states will become a fixed point. The stored patterns can then still be recalled but with 
a small error. This effect, which is difficult to evaluate in the present context, will 
further increase the robustness of the stored memories. 

4. Distribution of the coupling coefficients in diluted networks 

When a fraction 1 -f of all connections are cut in a network, the distribution of the 
coupling coefficients acquires the obvious form 

P ( J )  = (1 -f)8(J)+ P,(J). (27) 

The first term represents the (1 -f) N vanishing coefficients while the second term 
gives the distribution of the remaining connection strengths. The distribution P,(J) 
depends on the parameters CY and f and on the way the dilution has been achieved. 

In the case of annealed dilution, the coefficients 4 satisfy the conditions (3), (4) 
and ( 5 ) .  The distribution of the non-vanishing coefficients can then be expressed as 

Using replicas to lift the denominator to the numerator and noting that the dependence 
on the parameter J is solely contained in the integration variable of the first neuron 
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in the first replica, one obtains 

E 
P, ( J ) = lim ( 1 d T u )  exp ( - c, - - c, T: 

n - o  {col  2 

Here we have again assumed replica symmetry to be valid. The parameters $, E and 
F have their values from the solution of the saddle-point equations (Al . l ) - (A1.4) .  As 
the expression (30) does not depend on q, any dependence on K must come via the 
saddle-point equations. The expression (30) can be transformed using standard tech- 
niques into 

e-*’’ exp[ - ;( E + F ) J 2  + z G J ]  
P r ( J )  =- (31) f i  ‘ I  dzl+e-*f ’J  1 / (  E + F) e x ~ { [  F / 2 (  E + F)]z2} ’ 

By integrating over J,  one easily verifies that the distribution P, (J )  is normalized to f 
as it should be to make the whole distribution (27) normalized to 1. 

Let us first consider the case of full connnectivity f = 1 .  From (A1.4), it is seen that 
this obtains when the parameter e-*’*/- tends to infinity. Expression (31) then 
simplifies to 

exp[ - f (E+F)J ‘ ]  d z e x p  -- - E + 2 F  z 2 + z G J  . m 
P J J )  =- I-: [ , (E+.>  ] (32 )  27r 

Since for f = 1 ,  the saddle-point equation (A1.3) becomes 

E + 2 F  
( E  + F)’ 

1 =  

we obtain a Gaussian distribution with mean 0 and variance 1: 

(33) 

This distribution is independent of the number of stored patterns p and of the stability 
parameter K. The result (34) shows that many coupling coefficients have very small 
values in the fully connected network. 

For general values o f f  < 1 ,  it is useful to rewrite (31) as 

1 E + F  
P r ( J )  = - fim 2 E + 2 F  

3c d t  e x p [ - $ ( ? - J F ( E + F ) / ( E + 2 F ) J ) * ]  .I - x  f i  - 1 + exp{ -f[ (F/( E + 2F) ) t ’  - 2u]} 

where we have introduced the notation 
e - $ / 2  

e-“ =- m‘ 

(35) 

For given values of a, f and K ,  one has to solve the saddle-point equation for E, F 
and t) and plug these values in the expression (35). For general values of a, this can 
only be done numerically. However, near the saturation limit when a + a,( K , f ) ,  the 
saddle-point equations simplify and it becomes possible to evaluate the integral (35) 
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analytically. This is done in appendix 2. The final result is 

1 E + F  
P r ( J )  = - exp{-i[(E+ F ) 2 / ( E + 2 F ) ] J 2 } B [ I J I - ~ 2 u / ( E +  F)] .  J T ; ; m  (37)  

This is a gaussian distribution with mean zero and variance ( E + 2 F ) / ( E  + F)’ from 
which the middle section has been cut out. The width of the gap depends on the 
parameter f but not on K. The gap increases gradually with growing dilution and 
approaches its maximum value 1 whenftends to zero. Concurrently with the broadening 
gap, the width of the Gaussian decreases as is necessary to keep the value of J 2  
unchanged and equal to 1, as is required by condition (4). These results are illustrated 
in figure 4, which shows the distribution P r ( J )  near the saturation limit for four values 
of the parameter f :  

? 

0.5 1.0 1.5 

J 

Figure 4. Probability distribution of the positive-valued coupling coefficients in the case 
of annealed dilution near saturation for f =  1 (broken curve) and f =  0.92, 0.67 and 0.18 
(solid curves a, b and c, respectively). 

Let us now turn to the case of quenched dilution. Here the distribution P r o )  is 
the standard Gaussian normalized to f 

This is true in both cases of quenched dilution considered in section 3.  If the random 
cutting is done prior to the learning process, we have seen that the conditions on the 
coupling coefficients J, are identical with those for a fully connected network with f N 
neurons. The result (38)  then follows immediately from the distribution (34) for a fully 
connected network. If, on the other hand, the cutting is done after the learning process 
is finished, we start from the Gaussian distribution (34). Random cutting of connections 
will then preserve the form of the distribution and solely change its normalization. 

5. Discussion 

The primary result of this paper is the determination of the maximal storage capacity 
a, for a neural network model designed by the optimal Gardner prescription and 
diluted in three different ways. Figure 1 summarizes our findings for the case of a 
stability parameter K = 0. 
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Curve c of figure 1 refers to the case of quenched dilution after learning. Here one 
starts with a fully connected model storing p = 2 N patterns and cuts synapses at 
random. N o  correlation exists between the cuts and the patterns. As a result, for any 
degree of dilution, many stability conditions are violated and all patterns are likely to 
become destabilized. This lack of robustness is due to the extreme specialization of 
the synaptic matrix. To reach the ultimate limit a ,  = 2 in the fully connected network, 
every coupling coefficient has to take on a sharply defined value. Any deviation from 
these values results in drastic changes of the cooperative behaviour. In our case, the 
storage capacity jumps abruptly from its maximal value a ,  = 2 at f = 1 to a ,  = 0 for 
all f < 1. 

For values of a smaller than 2, the a N  patterns can be stored in the network using 
different learning rules. The greatest robustness against quenched dilution is obtained 
when the stability parameter K is made as large as posible. This can be done using 
the minimum-overlap algorithm of Krauth and MCzard (1987). In this case, a much 
smaller percentage of unstable bits may occur, e.g. for K = 1 corresponding to a =I $, 
a 10% dilution produces only 0.1% negative stabilities. Moreover, these negative 
stabilities are rather small in their absolute value. Hence, it is reasonable that con- 
figurations near to the patterns will act as attractors allowing retrieval with a small 
error (Amit et al 1990). 

Curve b shows a simple linear dependence of a ,  on f and corresponds to quenched 
dilution before learning. Here, a fraction (1 - f )  of the synapses is set equal to zero. 
After that, the remaining synapses are chosen to stabilize as many patterns as possible. 
Again, there is no correlation between the dilution and the patterns to be stored. The 
linear decrease of a ,  with increasing dilution results from the fact that the information 
about the patterns has to be carried by a restricted set of synapses. In this sense, the 
diluted system is equivalent to a fully connected system of smaller size. 

The most interesting result is given by curve a and  concerns the storage capacity 
for annealed dilution. Again, a fraction (1 - f )  of the synapses is set equal to zero, but 
this time both the position of the zero synapses and  the values of the remaining non-zero 
ones are determined in order to optimize the storage capacity. Now the dilution process 
is clearly correlated with the patterns under consideration and hence the zero bonds 
also carry information about the patterns. Due to the many partly contradictory 
requirements on the coupling coefficients, there is a large degree of frustration in fully 
connected models. This gives rise to many synapses with optimal value near to zero. 
A properly placed zero bond now carries almost as much information as such an  
optimal one. Therefore a ,  decreases very slowly from the maximal value a,= 2 at f = 1. 
If 25% of the synapses are cut we find a ,  = 1.98, i.e. a decrease in storage capacity of 
just 1 YO. 

I f f  tends to zero, so does, of course, the storage capacity. Our explicit result 
a ,  -4f In f indicates, however, that the slope at f = 0 is infinite. Hence, in extremely 
diluted networks, every non-zero synapse, if optimally placed, can carry a lot of 
information. This is well known from the storage of patterns with low level of activity 
(Wilshaw et a1 (1969, Nadal and Toulouse 1990) and is demonstrated here for the first 
time for patterns with symmetric statistics, 

It is interesting to compare our findings with the results for a diluted Hopfield 
model (Sompolinsky 1986, Van Hemmen 1987). Although the dependence of a ,  on f 
found there looks qualitatively similar to our curve a, the reasons are rather different. 
The Hebb rule used in the Hopfield model is non-optimal. As a result, near the 
saturation limit cy, - 0.14 many coupling coefficients in the fully connected network 
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d o  not even have the correct sign. Quenched dilution now also eliminates part of these 
unfavourable bonds so that the curve a , ( f )  stays somewhat above the linear lawfa,( 1). 
It is reasonable that this kind of robustness requires some redundancy of the fully 
connected net. In the case of extreme dilution f +  0, one finds for the Hopfield model 
a,/f = 2 / ~  (Derrida et a1 1987) which is much smaller than the optimal value, as 
expected from the quenched character of the dilution. 

Our study of robustness to random dilution displays a great similarity to the work 
of Virasoro (1988) on the effects of the destruction of synapses in neural networks. 
Whereas we have concentrated on the robustness of a network in which randomly 
chosen patterns are stored and  on the role played by the stability parameter K ,  Virasoro 
(1988) has gone a step further, studying the consequences of random dilution in a 
network which stores ultrametric patterns. His calculation yields an  interesting model 
for explaining the syndrome prosopagnosia in neurology. 

In addition to the storage capacities, we have studied the distribution P ( J )  of the 
optimal values of the synapses. The results show the differences between quenched 
and annealed dilution most clearly. For quenched dilution the distribution of the 
non-zero couplings is Gaussian with zero mean and a variance determined by the 
proper normalization constraint. Hence, despite the large number of zero bonds, there 
are many synapses with rather small absolute value. In the case of annealed dilution 
near saturation, P ( J )  is a Gaussian from which the middle section has been removed 
(figure 4). This means that all non-zero synapses have absolute values larger than a 
given threshold which depends on the degree of dilution. If, for a synapse, the optimal 
value would lie inside the removed interval, it would be replaced by one of the broken 
bonds. In this way, the system optimizes its structure both with respect to the value 
of the non-zero bonds and  with respect to the position of the zero bonds. This result 
clearly indicates that, for the case of annealed dilution, learning and dilution are 
intimately connected. We started by fixing the degree of dilution (1 -f)  and then 
designed the network in the optimal way. Alternatively, one could start with an  
optimized fully connected model and then cut synapses in the order of their absolute 
value until the desired degree of dilution is reached. A similar procedure has already 
been used for the Hebb rule (Sompolinsky 1987, Van Hemmen 1987). Our result for 
the distribution P ( J )  suggests that both procedures may be equivalent. 
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Appendix 1 

The four equations for the replica-symmetric saddle point are 

( A l . l )  

exp( -$ /2)41/ (  E + F )  exp{f[ F / (  E + F ) ] z * }  
l + e x p ( - I + h / 2 ) J l / ( E + F ) e x p ( f [ F / ( E +  F ) ] z 2 }  

(A1.2) 
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e x p ( - $ / 2 ) J l / ( E + F )  exp{$[F/ (E+F)]z*}  
l + e x p ( - i , b / 2 ) J l / ( E + F )  exp{ t [F / (E+F) ]z ’ )  

(A1.3) 

(A1.4) 

Instead of (A1.2) and  (A1.3) we can use the simpler derived equations 

) z 2  (A1.5) 
e x p ( - + / 2 ) J l / ( E  + F )  exp{$[F/(E +F)]z’} 

1 +exp(-i ,b/2)Jl/(E + F )  exp{f[F/(E + F)]z*} E + F  

Fq+ E = 1. (A1.6) 

The equations for the fully connected network f = 1 are recovered when we let the 
parameter tend to infinity. The equations (A1.2), (A1.3) and (A1.5) 
become simple algebraic equations as is known in the calculations of Gardner (1988). 
For general J the four equation ( A l . l ) ,  (A1.4), (A1.5) and  (A1.6) have to be solved 
to obtain q, F, E and $ for given values off,  CY and K. This can only be done numerically. 

The storage capacity CY, for given values o f f  and K is obtained when q tends to 
1. In this limit, it is possible to replace the saddle-point equations by their asymptotic 
expressions. For equation (Al.11, one easily obtains 

X 

l imfF(1 -  9)’ = a, I Dz(z  + K)’. 
q - 1  - K  

(A1.7) 

This shows that F tends to infinity like (1  - q ) - * .  Equation (A1.5) shows that E + F 
also tends to infinity when q + 1 but more slowly, like (1 - q)- I .  Thus the ratio F/( E + F )  
also tends to infinity. This ratio occurs as parameter in the integrals (A1.4) and (A1.5). 
The limit of these integrals can easily be evaluated using the identity 

1 
lim = e( b - z’) (A1.8) 
a-= 1 +exp[(a /2) (z2-  b ) ]  

where b can be any constant. To simplify the notation, we introduce two new symbols 
a and  a defined by 

(A1.9) 

(A1.lO) 

When q --* 1, we know that a + cc. Let us also choose a + but so that the ratio a/ a 
remains fixed and equal to a positive number U ’ .  Equations (A1.4) and  (A1.5) then 
become 

f = 1 -Erf u ( A l . l l )  

2 
lim f ( 1 - q ) (  E + F )  = 1 - Erf u + - U e-’- 
4-1 J;; 

Finally, from equation (A1.6), one gets 

(Al .  12) 

lim F(l - q I 2 =  lim ( 1  - q ) ( E  + F ) .  
4 - 1  4 -  I 

(A1.13) 
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From ( A l . l l ) ,  we see that any value o f f  between 0 and  1 can be obtained by allowing 
the constant U to vary between 0 and infinity. From (A1.7), ( A l . l l )  and (A1.12), we 
obtain the corresponding storage capacity 

(A1.14) 

Appendix 2 

From appendix 1 ,  we know that the saturation limit q + 1 can be obtained for all values 
off by letting both parameters a and U tend to infinity while keeping the ratio a l a  = U’ 

fixed and positive. 
The expression for the integral in (35) 

e x p [ - ; ( t - - J F ( E + F ) / ( E + 2 F )  J)’] 
-X 1 + expi-+{[ F / ( E  + F ) ] t 2  -2u)O 

can be simplified when q + 1 in different steps. We first use 

- 1  lim ~ - 
F 

q - 1  E + 2 F  

(A2.1) 

(A2.2) 

which follows from appendix 1 .  Changing to a new integration variable 

w = t - J Z T F J  (A2.3) 

transforms Z(J) into 

1 
Z ( J ) = l i m  Dw (A2.4) 

As Z(J) is an  even function of J, we can restrict the following discussion to positive 
values of J. Then both J and 2 u  tend to CO when q +  1 .  We now use the 
following relation which holds asymptotically for any two large positive numbers A 
and  B :  

X 

q - r l  l + e ~ p [ - ~ [ ( w + ~ J ) ~ - 2 u l ] ’  

1 
= e [ w  - ( B  - A)] + e[-w - ( B +  A ) ] .  (A2.5) 

1 + exp[ - t ( ( w  + A)’ - B2)1 

Making use of this relation in (A2.3) ,  we obtain 

Z(J) = 1 - fi Dw (A2.6) 

where 

R = - v ‘ Z T F { [ ~ U / ( E + F ) ] ’ ’ ’ + J }  

S = d Z T F  { [ 2 ~ / (  E + F)]”’ - J}. 

When E + F tends to infinity, the lower limit of the integral always tends to -a while 
the upper limit tends to a3 or  -cc depending on the sign of J 2 u / (  E + F )  - J. So we 
obtain finally 

(A2.7) Z(J)  = O [ l J i  - J ~ u / (  E + F ) ] .  
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We remark that, when q + 1 ,  the ratio 2 u / (  E + F )  tends to a finite limit which depends 
only on the parameter$ From the definition of a, we have 

2 u  u F  
- 2 -  -- 

E + F  a ( E + F ) ”  

Using (A1.7), ( A l . l l )  and (A1.13), this becomes 

2u 2u3” -- 
E + F - 1 - Erf U + (2/v‘%)u e-”” 

(A2.8)  

(A2.9)  

This result depends only on the parameter U which determines f by (Al.11).  The value 
increases monotonically between 0 and 1 when U varies between 0 and CO. 
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